
GHAR SE CODE {

NumPy Syllabus:-

Course Title: NumPy

Course By: GSC (GHAR SE CODE)

Duration: 32 Hrs

Code Spirit: “Think in Arrays, Not Loops”

Module Topic Detailed Overview

1
Introduction to

NumPy

- What is NumPy and why use it?- Installing NumPy-

Importing the library (import numpy as np)- Differences

between lists and NumPy arrays

2 Creating Arrays

- np.array() basics- Creating 1D, 2D, and 3D arrays- Using

built-in functions: arange(), linspace(), zeros(), ones(),

empty(), full()- Data types and dtype

3 Array Attributes

- Shape (.shape), size (.size), dimensionality (.ndim),

itemsize, and datatype- Reshaping arrays with reshape()-

Flattening arrays

4
Indexing and

Slicing

- Basic indexing (positive and negative)- Slicing in 1D, 2D

arrays- Boolean indexing and masking- Fancy indexing with

arrays of indices

5 Array Operations

- Arithmetic operations (add, subtract, multiply, divide)-

Universal functions (ufuncs): np.sqrt(), np.exp(),

np.log(), np.sin() etc.- Aggregation functions: sum(),

mean(), std(), min(), max()

6 Broadcasting
- Concept and rules of broadcasting- Examples of broadcasting

in operations- Limitations and shape compatibility

Module Topic Detailed Overview

7
Manipulating

Arrays

- reshape(), transpose(), swapaxes()- Stacking arrays:

vstack(), hstack(), concatenate()- Splitting arrays:

split(), hsplit(), vsplit()

8 Random Module

- Introduction to np.random- Random number generation:

rand(), randn(), randint()- Setting seed with

np.random.seed()- Random sampling and permutations

9
Linear Algebra

with NumPy

- Dot product and matrix multiplication (dot(), matmul())-

Identity and diagonal matrices- Determinant and inverse using

linalg.det() and linalg.inv()- Solving systems of

equations: linalg.solve()

10
Advanced

Indexing and

Masking

- Using conditions with np.where()- Filtering arrays-

Conditional replacement- Complex slicing

11
Handling Missing

or Invalid Data

- Use of np.nan, np.isnan()- Replacing missing values-

NaN-safe functions: np.nansum(), np.nanmean()

12
Performance and

Memory

- Why NumPy is faster than Python lists- Memory layout (C-

style vs Fortran-style)- Time comparisons with timeit- In-

place operations

13 File Input/Output

- Saving and loading arrays with np.save(), np.load()-

Saving in text format using savetxt() and loadtxt()-

Working with CSV and TSV files

14
Mini Projects /

Assignments

- Basic image manipulation- Matrix transformations-

Statistical simulations (dice, coin flips)- Numerical solution to

equations

}

	}

