GHAR SE CODE {

NumPy Syllabus:-

Course Title: NumPy

Course By: GSC (GHAR SE CODE)

Duration: 32 Hrs

Code Spirit: "Think in Arrays, Not Loops"

Module	Торіс	Detailed Overview
1	Introduction to NumPy	- What is NumPy and why use it?- Installing NumPy- Importing the library (import numpy as np)- Differences between lists and NumPy arrays
2	Creating Arrays	<pre>- np.array() basics- Creating 1D, 2D, and 3D arrays- Using built-in functions: arange(), linspace(), zeros(), ones(), empty(), full()- Data types and dtype</pre>
3	Array Attributes	- Shape (.shape), size (.size), dimensionality (.ndim), itemsize, and datatype- Reshaping arrays with reshape()- Flattening arrays
4	Indexing and Slicing	- Basic indexing (positive and negative)- Slicing in 1D, 2D arrays- Boolean indexing and masking- Fancy indexing with arrays of indices
5	Array Operations	- Arithmetic operations (add, subtract, multiply, divide)- Universal functions (ufuncs): np.sqrt(), np.exp(), np.log(), np.sin() etc Aggregation functions: sum(), mean(), std(), min(), max()
6	Broadcasting	- Concept and rules of broadcasting- Examples of broadcasting in operations- Limitations and shape compatibility

Module	Торіс	Detailed Overview
7	Manipulating Arrays	<pre>- reshape(), transpose(), swapaxes() - Stacking arrays: vstack(), hstack(), concatenate() - Splitting arrays: split(), hsplit(), vsplit()</pre>
8	Random Module	- Introduction to np.random- Random number generation: rand(), randn(), randint()- Setting seed with np.random.seed()- Random sampling and permutations
9	Linear Algebra with NumPy	- Dot product and matrix multiplication (dot(), matmul())- Identity and diagonal matrices- Determinant and inverse using linalg.det() and linalg.inv()- Solving systems of equations: linalg.solve()
10	Advanced Indexing and Masking	- Using conditions with np.where() - Filtering arrays- Conditional replacement- Complex slicing
11	Handling Missing or Invalid Data	- Use of np.nan, np.isnan() - Replacing missing values- NaN-safe functions: np.nansum(), np.nanmean()
12	Performance and Memory	- Why NumPy is faster than Python lists- Memory layout (C- style vs Fortran-style)- Time comparisons with timeit- In- place operations
13	File Input/Output	- Saving and loading arrays with np.save(), np.load()- Saving in text format using savetxt() and loadtxt()- Working with CSV and TSV files
14	Mini Projects / Assignments	- Basic image manipulation- Matrix transformations- Statistical simulations (dice, coin flips)- Numerical solution to equations

}